
NONSTEADY FILTRATION OF A FLUID IN DEFORMABLE CRACKED-POROUS BEDS 
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This article examines general properties of nonsteady solutions of nonlinear systems 
describing filtration or heat transfer in a heterogeneous medium with allowance for 
the nonlinearity of its properties. 

I. Transport processes in heterogeneous media are often modeled on the basis of several 
coexisting homogeneous continua with heat transfer between them. Here, the structural-mechan- 
ical properties of the heterogeneous media generally depend appreciably (nonlinearly) on the 
transport cqnditions. It is interesting to study the general properties of transport equa- 
tions. We do this below, usin~ as an example the filtration of a fluid in a cracked-porous 
medium. 

The experimental data (see [i], for example) indicates that the filtration characteris- 
tics of a medium are heavily nonlinearly dependent on its stress state. This dependence can- 
not be adequately accounted for within the framework of the well-kno%m model [2], the latter 
in particular precluding substantial deformation of cracks and their closure. In this regard, 
the model of an elastic compressible cracked-porous medium in [3] is more suitable. The perm- 
eability tensor and porosity of such a medium for different stress states were determined in 
[4], while steady filtration was examined in [5]. Irreversible deformations of the cracks 
were considered in the model in [6] for closed beds. Below, we use the model in [3] to examine 
nonsteady filtration for the case when the cracks are open over the entire flow region. The 
process is described by the system of equations 

a 8 t - - 4  O! 

where 

~ = (m--~) / (p~ { i =  I, 2), ~--=z/(• ~ = ~,~I'~; 

a = m~ Im~ (p~ - -  ,~)(~,> + I~,,01 -~, ~ = ,~;/h~ - - =  ~<./• << ~; 

• = h~ [ m ~  ~ ( ~  + ~,.)1-'.  

(2) 

System (i) is valid only at pl > ~ (0 < ~ < 1), When the cracks are open over the entire 
filtration region. At pl ! o, the cracks are cl~sed and filtration in this zone occurs by 
blocks (elastic regime equation). Here, compatibility conditions must be satisfied on the un- 
known boundary. In accordance with the present formulation of the problem, below we assume that 
pO > PQ > ~ (the permeability of the cracks is every-where considerably greater than the perme- 
ability of the blocks). 

2. Let us examine the qualitative characteristics of model (I). First we will evaluate 
the coefficient a. In actuality, the difference pO _ ~ ~ (105_107 ) N/m =. Taking normal val- 

o ~  m o ues for the parameters [7] B= ~ (10-'-lO -9) m2/N, 8m ~ i0-~ ma/N, mx A 2 " I0 -r (r = i, 2, 
,-r 3~_r ...), we find a ~ (i0 -i0 ). Thus, in contrast to the model in [2], the term a~$x/~t in 

the first equation of (1) cannot be ignored in the general case. 

An important feature of model (i) is the presence of nonlinearity, characterizing the 
elastic deformation of the cracks (the corresponding expression for filtration velocity can be 
found in the literature; see [8], for example). 

The role of the coefficient a and the nonlinear term in Eq. (I) can be evaluated, follow- 
ing [i], by examining the propagation of a perturbation introduced into the system at ~ = x = 
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0. To do this, we replace the second equation by the sum of Eqs. (1)and we insert it into 
the new system 

where n. are characteristic changes in pressure ~i in the region of a bed with a linear scale 
Z; k islthe corresponding time scale. We obtain 

or- 4a/2 

0~2 an: 0~: k 
0 - { =  n.,. 0-( = l --i- 

r _ ?14 1 1 ~4  

(3) 

�9 Let:u ~ r (which corresponds to the model in [2] "to within the nonlinearity"). Eval- 
uating the terms in (3) at n2/n, ~ r (the pressure changes significantly in the cracks com- 
pared to the blocks), we find that this process takes place over a short period of time k ~ 
r (~ ~ s << �9 in dimensional form) in the region 

41 z -~ n] (4x 2 ~ n~• (4) 

and is described by the equations 

0-----~= 4 Ot = r  (5 )  

At t h i s  s t a g e ,  t h e  c o e f f i c i e n t  a n a l o g o u s  t o  p r e s s u r e  c o n d u c t i o n  i n  l i n e a r  f i l t r a t i o n  i s  e q u a l  
to i/(4a) ~> i (rapid motion), and the fluid flows into the blocks. 

It is similarly established that filtration with n2/n, ~ I (pressure changes of the same 
order of magnitude in the cracks and blocks) occurs in region (4) at k ~ i (~ - 7) and is des- 
cribed by the equations 

1 7 2 ~ + ~ _ r  ar = 1 v2r  ' (6 )  
4 at 4 

the "pressure conduction coefficient" now being equal to I/4 (determined by the permeability 
of the cracks and the compressibility of the blocks, motion being slower in this case). 

Thus, the qualitative development of filtration processes with n2/n, ~ r and n~2n, ~ 1 is 
similar for model (i) at a ~ r and model [2] (Eqs. (5), (6) and (22.11), (22.5) in [I] coin- 
cide "to within the nonlinearity"). 

At a - l,and k - i, filtration occurs with n2/n, - 1 in region (4) (the process with na/ 
n, - e iS now impossible in the same region): 

a 0--~ = ~ -  O---~  = ~:1 - -  ' r  (7 )  

Compared to (5), the blocks now affect the pressure distribution in the cracks, since filtra- 
tion occurs slowly. The process is established in region (4) at k - c-*: 

--2 -4 \ ~ 0 ( i = 1 , 2 ) .  (8) 

With a further increase in the parameter a (a ~ e-x), filtratlon slows even more. In 
region (4) at k ~ I, the system still does not "sense" the perturbation, while at k ~ ~-* the 
process is described by the equations 

a 0~  _ 1 \:>~_~ ( i = l ,  2), 
Ot 4 

with a stationary pressure distribution (8)being established at k - r 

Analysis of Eqs. (3) shows that the effect of the nonlinear term nearly precludes filtra- 
tion wlgh n,/na ~ r (the pressure changes in the blocks are much greater than in the cracks) 
at values of a ~ (r i, r For the model in [2], this stage occurs at k ~ 1 in the region 
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At surfaces of discontinuity, the same conditions are present as for the model [2] (are 
established analogously to [2]): @,, ~@~/~ are continuous; ~a, 8@a/~ are continuous at c 
0, while at e = 0 the discontinuities decay exponentially over time. 

Integrating Eqs. (i) over time for 0 < t < s < I, we find ~i(x, s) + ~i(x, 0) at s § 0. 
Thus, the initial values of the functions ~q c~n b~ prescribed independently (for model ~2], 
this is possible only with allowance for the volume of the cracks, which is usually much less 
than the volume of the pores). Excluding one of the unknown functions in (i), we find that 
the effective equations for ~,, @2 will be different, and they will coincide only at r + O, 

a~ _~ (• U~ 1 (9)  
O~ , l q - a  , 

(the medium becomes porous, with an overall pressure conduction coefficient). For the model 
[2], the effective equations ooincide at m~ = h~ = 0. 

3. Let us begin to construct the solution of system (i). After a critical evaluation 
of the well-known methods of solving nonlinear systems with partial derivatives, we chose the 
method of integral relations [2] as the most effective and simplest method. Physically clear 
conclusions can be drawn even in the first approximation, corresponding to the method of suc- 
cessive substitution of steady states. 

Changing over to zero boundary conditions, we will examine the filtration of a fluid to 
a tunnel: 

. . . . .  a0r 1 02 (~h + 1) 4 -k- ~)= .... $,, 0r e 02/~"- ~ . .  + $1 ,  

at 4 O~ 2 al o~ z (i0) 

~ = ( P i  pO)l(pO_a) ( i =  I, 2). 

In accordance with the chosen method, we seek the solution of (i0) in the form [2, 5] 

r t ) - - - - 1  + [ a + ( 1  ~)$qi(t)ll/r - 1, 2), ~ = ( 1 - - v )  a, 

satisfying the boundary conditions 

(Ii) 

@~(0, t ) =  v = -  (p~  ~  (P~(O, t)--po), 

$~ ( l .  t) = o (p~ (I~, t) : :  p~ 

(12) 

In (ii), we introduced two boundaries Zi = ~ (t)1 of perturbation zones propagating through the 
cracks and blocks with the start-up of the tunnel [9]. 

The laws of motion of Z i = Zi(t) are found from the second integral relations correspond- 
ing to (i0)~ 

1 1 A aB-(l exp (rt))+ (A + B) t ] ,  12(t)--: l q - - a  _ l + a  

1 [ a(A aB) (l e x p ( r t ) ) + ( A + B ) t ] ,  I2(0-- l -r-a l + a  

A = ~ 1 , B =  e~ [~ 1 + 4 ( 5 - - 9 ~ - - 4 ~ z  9/4) 1 
- -  , , r - - - - - - 1  

413 ~ 2 45 (1 - -  cz) z a 

(13) 

The functions A = A(~), B = B(~) are monotonic for 0 < v < i, 4.5 < A(~) < 6, 6e < B(v) < 18s. 

It follows from (13) for sufficiently large values of time 

I~ (t) ,.~ l~ (t) ~ (A + B)t/(l + a) (14) 

that the filtration process takes place as it does in a normal porous medium. The case ~(t) 
Za(t) for any t is examined below. Here, we assume that Z~(t) # Z2(t) for finite t (t # 0). 

The first phase of the process ends at the moment t = t,, when the boundary ZI reaches 
the contour of the bed (half the distance to the adjacent well): 
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(h) = L2. (15) 

The solution of system (i0) is similarly constructed for the second phase and has the 
form* 

~I  (~) = - -  1 -[- [= ~,- ( 1 - -  ~) [ILI ~/4, r (~, t) = - -  1 + [~ + ( 1 - -  u)  ~ll ,  (t)l , /4 ,  
(16) 

i~ (t) = l ~  (t) = y + [l~, ( h ) -  ?l exp  ( h  - -  t), y = L 2 - -  ~ / ~ ,  

where the second subscript in the expression lai(t) indicates the phase of the process 
(l~,(t,) is also determined by the second formula in (13)). 

The filtration process is established at the moment t = ta, when the boundary Za(t) 
reaches the position L: 

l~2 (t~) = L ~, (17) 

and the functions ~i([) have the form [5]: 

~ (~) = ~2 (~) --I + [~ + (I -- ~) [/L] z/4 (18) 

We use (17) to find the time required to establish the process 

t2(a, L, ~) : tt + In [1 -]- 8(t0], 8(tl) = A - -  a___.___~b [1 - -  exp(rtt)], (19) 
B ( l + a )  

where the moment of time t = tt is determined from Eq. (15): 

BS(h) + (A + B) h = (1 -}- a) L z. (20) 

Using (19) and (20) and experimental data on filtration, we can evaluate the parameter a for 
the reservoir being examined here. 

At a = A/B for all values of t, the laws of motion of I i = li(t) coincide with (14). In 
this case 

8 ( h )  = O, t2 = h = (1 + a ) L 2 / ( A I +  B).  

4. The effect of the dimensionless complexes a, L, and ~ on the time of establishment 
of the process can be evaluated from Eq. (20), taking into account that it follows from (19) 
that dt2/dt, > 0. For example, differentiating (20) with respect to a (assuming t, = t,(a)), 
we find dtt/da > 0. Thus, the transient period t = t2 increases with an increase in the pa- 
rameter a. We similarly obtain dt2/dL 2 > 0, dta/d9 > 0. Meanwhile, the effect of the com- 
plex ~ (in particular, the depression) is fairly weak (the coefficients A and B used to ex- 
press v in (19) and (20) change little). 

Let us evaluate the order of the parameter L (the order of the parameter a was evalua- 
ted above). For i00 m < X < 2000 m and pressure conduction of 0.i m'/sec ~ x, < 5 m'/sec, 
we obtain L 2 - (10~-I07~T--*--([T] = C). The lag time is determined from the pres--sure recovery 
[i0] and varies broadly for different beds (from several minutes to several hours), amounting 
to 15-20% of the transient period. For example, L' - (1-10 ~) for T = 10 mln, while L 2 - (i0-*- 
I0') for T = 5 h. 

In the special cases a << i, a >> I, Eqs. 
1 

~ (/,) ~-~, --~-- [ 1 - -  exp ( _  -_~_) ] 

(19) and (20) assume a simpler form. At a << 

where the value t = t, is determined from the equation 

0,2 L ~ - -  1 -+- exp (--h/a) - -  tl = O. 

At a >> 1 6(t,) = (--i + A/aB)[I -- exp(--t,)] and B~(tt) < i. If aL 2 >> i in (20), then t, z 

*The solution (16), characterizing an intermediate phase of the process, is somewhat condi- 
tional in character (flowhas already been established in the cracks but not in the blocks) 
due to the specific features of the method of successive substitution of steady states. 
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TABLE i. Range of the Transient Period of the Filtration 
Process at i00 m < X < 2000 m 

z,, m2/sec 
�9 . , o - .  t f 3 ' I t 

s e e  a = 0 , 1  a = !  a = l  0 

0,06 

0,18 

0,36 

1,8 

1 
9,3 
2,1 
9,3 
3,1 
9,4 
9,7 
9,8 

0,7 
3,1 
1,5 
3,1 
2,3 
3,2 
4,7 
3,7 

16,5 
17,4 
2,4 

17,5 
3,5 

17,6 
9,8 

18,2 

3 1 

0,8 6 
5,9 92,5 
1,6 6,4 
5,9 92,5 
2,4 6,8 
5,9 92,5 
4,8 12,7 
6,2 92,5 

2,2 
30,9 
2,7 

30,9 
3,4 

30,9 
6,2 

30,9 

Note.: The transient period for each lag is given in hours 
in the first row and days in the second row. 

TABLE 2. Comparison of Transient Periods of the Fil- 
tration Process in an Elastic Compressible Cracked- 
Porous Reservoir at X = 300 m, n = I m2/sec 

(o 

�9 , 10 - 4  see a=O,l  a = 1 0  

0,06 
0,18 
0,36 
1,8 

5,5 
6,5 
8,1 
20 

I tl~-- 1 

10 
10,7 
12,1 
22 

days 

2,1 
2,12 
2,16 
2,46 

Porous medium 

Transient period 
3 h [21 

aL2/(A + B) = 0.2aL 2. 
on T~ 

The condition aL 2 >> 1 means that there is the following limitation 

a X  z 
�9 << - -  (21) 

MI 

For example, at a = i, X = 500 m, and z, = 5 m2/sec, we obtain �9 << 14 h. Thus, condition 
(21) is realistic. 

The transient period calculated from Eqs. (19) and (20) is shown in Table I. Analysis 
of Eqs. (19) and (20) showed that e has little effect on the transient period, so we took a 
fixed value e = 10 -2 in the calculations. For comparison, Table 2 also indicates the transi- 
ent period for model (i) and the porous medium. 

The following conclusions can be made from the calculated results. 

The dimension X D the pressure conduction of the cracks, and the parameter ~ have a very 
large effect on the transient period. A lag is manifest to the greatest extent with small 
values of crack pressure conduction and small values of X. The effect of T on the transient 
period decreases with an increase in the parameter a. For the investigated values ~ > 0.1, 
the process of filtration in an elastic compressible cracked-porous reservoir is established 
much more slowly than in a porous medium. When the more approximate formula tx z 0.2aL 2 is 
used (for ~ = i0), the error is no greater than 15%. 

It should be noted that a rough estimate of the transient period can be obtained as fol- 
lows for L 2 >> i. In (20), the term B~(t,) is finite at anyaand t, = 0.2(1 + a)L 2. At 
Irt, l ~ 2 exp (rt,) ~ 0.13 and ~(t,) = (A -- aB)/[B(I + a)]. 

5. Let us examine the effect of the parameters on the yield q. 

In the first phase, with allowance for (13) 

q(t,v, a, e )=- -~- -  O~ + e O~ ~=o 4 + ~3/4l~(t) 
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Fig. i. Dependence of the yield on the parameter L = X/(~,T)*/=: I) ~ = 0.2, 2) 0.4; 
3) 0.8. 

Fig. 2. Dependence of the yield on the parameter 9 = (p* -- po)/(p ~ -- ~): l) L = i0; 
2) 30; 3) 50; 4) 70; 5) i00. 

the yield increases with an increase in the parameters a and ~ and decreases with thei;passage 
of time (Sli/Sa < 0, ~li/3~ < 0). In the second phase 

q ( t ,  ,~, a, e, L)=: 1--cz ( + - 5  e, ) 
% 

r 3 / ~  (t) 

the values of a and t have very little effect (filtration takes place only through the blocks), 
while the yield now increases more slowly with an increase in 9. 

In the third phase 

q ( v , a ; e, L ) = 1 -I- e "/ "~ '' 
4 - - - -~  ~ 4 L  

there is almost no change in the dependence of the yield on the parameters ~ and a. The yield 
decreases with an increase in L in the second and third phases, which signifies a redistribu- 
tion of the fixed depression over a greater distance. 

On the whole, a change in the parameters affects the yield mainly through the cracks. The 
final yield has practically been established by the end of the first phase. 

The conclusions reached here (and illustrated by Figs. 1 and 2, where all of the parame- 
ters are dimensionless) are consistent with the analysis of the steady-state case in [5]: the 
yield increases as the cracks are compressed (as v increases) and nearly stabilizes when a re- 
gion of closed cracks develops near the tunnel. 

Thus, the above-examined example of filtration in cracked-porous materials shows the 
strong dependence of transport processes in heterogeneous media on changes in the structural- 
mechanical properties. 

NOTATION 

p, x, ~ and 4, ~, t, dimensional and dimensionless pressure, coordinate, and time, re- 
spectively; m, h, • porosity, permeability, and pressure conduction; 8 n and 8 , coefficients 
of compressibility of the fluid and the pores in the blocks; ~, viscosity of t~e fluid; 7, 
lag time; pO, po, o, characteristic values of pressure; l(t), boundary of perturbation zone; 
q, yield; n, Z, k, scales of pressure, bed region, and time; a, ~, L, and ~, dimensionless 
parameters; the symbol fo denotes characteristics of the system with an initial bed pressure 
pO. Indices: i, 2, cracks and blocks, respectively. 

LITERATURE CITED 

i. V. N. Nikolaevskii, K. S. Basniev, A. ~ T. Gorbunov, and G. A. Zotov, Mechanics of Satura- 
ted Porous Media [in Russian], Moscow (1970). 

2. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Nonsteady Filtration of Li- 
quids and Gases, Moscow (1972). 

3. Yu. A. Buevich, Inzh.-Fiz. Zh., 46, No. 4, 593-600 (1984). 

1182 



4. Yu. A. Buevich, S. L. Komarinskii, V. S. Nustrov, and V. A. Ustinov, Inzh.-Fiz. Zh., 49, 
No. 5, 818-826 (1985). 

5. Yu. A. Buevich and V. S. Nustrov, Inzh.-Fiz. Zh., 48, No. 6, 942-950 (1985). 
6. N. Sh. Khairedinov, M. G. Alishaev, and A. A. Ben-~kh'ya, Intensification of Geological 

Prospecting and Oil Recovery in Western Siberia [in Russian], Tyumen (1984), pp. 47-49. 
7. Sh. K. Gimatudinov, Physics of Oil and Gas Beds [in Russian], Moscow (1975). 
8. Yu. P. Zheltov, Mechanics of an Oil-and,Gas-Bearing Bed [in Russian], Moscow (1975). 
9. Yu. V. Kalinovskii, "Solution of a filtration ~roblem in a cracked-porous medium by the 

method of integral relations," Submitted to VNIEgasprom 25.07.1978, Moscow (1978), No. 3?. 
i0. Ao Ban, A. F. Bogomolova, V. A. Maksimov, et al., Effect of the Properties of Rocks on 

the Movement of Fluid inside Them [in Russian]~ Moscow (1962). 

PARAMETERSOF WAVE INSTABILITY IN A BOUNDARY LAYER 

B. Yu. Zanin UDC 532.517.3 

The waves developing in a boundary layer during transition from laminar to turbu- 
lent flow are investigated experimentally. 

The experimental study of flow in a boundary layer of a wing in an aerodynamic wind tun- 
nel and under natural conditions, i,e., in flight (including in clouds and near the earth), 
has shown [i] that in all these cases the transition from laminar to turbulent flow occurs 
through the development of an instability wave packet in the region of a positive pressure 
gradient, despite the different level and frequency composition of the leading flow turbulence. 
The mean frequency of this wave packet depends on the flow velocity and on the angle of at- 
tack. 

Quite important and demanding solution is the problem of which factors determine the fre- 
quency and wavelength in each specific case. Using this as a starting point, the purpose of 
the present study has been to explain the general features of the parameters of waves, gener- 
ated on the same profile for different attack angles of the model and flow velocities in the 
tube. To solve this problem in an aerodynamic wind tunnel, experimental measurements of wave 
instability were carried out in a boundary layer on a wing model in a wide range of flow re- 
gimes, and then were calculated and analyzed the dimensionless parameters describing this ef- 
fect, including the known frequency parameter F = 2~fv/U~ (see [2]), and the parameters 2~f~I/ 
U and 2~/~, used theoretically [3]. 

The studies were carried out in the aerodynamic wind tunnel T-324 of the Institute of 
Theoretical and Applied Mechanics, Siberian Branch of the Academy of Sciences of the USSR, 
having a degree of flow turbulence less than 0.04% [4]. The model of the wing, made of wood 
and coated varnish, had a NACA 63-2-615 profile. The wingspan of the model was I m, and the 
mean chord, along which measurements were taken, was b = 0.27 m. Ten drainage points were 
used to measure the static pressure at the upper surface of the model. The model was set up 
vertically in the operating portion of a tube with a square cross section. The angle of at- 
tack was determined relatively to the walls of the operating portion. The experiments were 
carried out for attack angles of the model of-4, 0, and 4 ~ for a leading flow velocity of 25 
m/sec and in the flow velocity region of 10-40 m/sec at an attack angle of the model being 4~ 

The thermoanemometric complex DISA 55D was used for measurements in the boundary layer. 
The detector of the thermoanemometer with a filament of diameter of 6 ~m and length of 2 mm 
was attached to the support, coated inside the tube by a fairing so as to reduce vibrations. 
The support was fixed in a coordinate grid, established in the window of the operating por- 
tion, and allowing to displace the detector with an accuracy of • mm in the longitudinal 
x direction and with an accuracy of • mm in the transverse y direction. To guarantee re- 
liable determination of the moment the detector touches the surface of the model, which is 
necessary for correct determination of the boundary layer thickness, the model was rubbed with 
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